28 research outputs found

    Orphan Nuclear Receptor Nur77 Inhibits Cardiac Hypertrophic Response to Beta-Adrenergic Stimulation.

    Get PDF
    The orphan nuclear receptor Nur77 plays critical roles in cardiovascular diseases, and its expression is markedly induced in the heart after beta-adrenergic receptor (β-AR) activation. However, the functional significance of Nur77 in β-AR signaling in the heart remains unclear. By using Northern blot, Western blot, and immunofluorescent staining assays, we showed that Nur77 expression was markedly upregulated in cardiomyocytes in response to multiple hypertrophic stimuli, including isoproterenol (ISO), phenylephrine (PE), and endothelin-1 (ET-1). In a time- and dose-dependent manner, ISO increases Nur77 expression in the nuclei of cardiomyocytes. Overexpression of Nur77 markedly inhibited ISO-induced cardiac hypertrophy by inducing nuclear translocation of Nur77 in cardiomyocytes. Furthermore, cardiac overexpression of Nur77 by intramyocardial injection of Ad-Nur77 substantially inhibited cardiac hypertrophy and ameliorated cardiac dysfunction after chronic infusion of ISO in mice. Mechanistically, we demonstrated that Nur77 functionally interacts with NFATc3 and GATA4 and inhibits their transcriptional activities, which are critical for the development of cardiac hypertrophy. These results demonstrate for the first time that Nur77 is a novel negative regulator for the β-AR-induced cardiac hypertrophy through inhibiting the NFATc3 and GATA4 transcriptional pathways. Targeting Nur77 may represent a potentially novel therapeutic strategy for preventing cardiac hypertrophy and heart failure

    The Lantern Vol. 51, No. 2, Spring 1985

    Get PDF
    • Electric Pink • Derby Day • Conversation • Seasons of Sonnets • Long After Killing Us • Haunting Memory • Sacrifice • Is This Positive Enough? • My Teddy Bear • A Gentleman of Ten • Hartman Center • Yesterday\u27s Child • Mors Pueris • Momentary Reflections • Children Sleeping • There\u27s No Place Like Home • I Set My Pleasures Adrift • The Beer Can • Fragments of an Epic • Actaeon • She Sleeps • Chicago • Death Light • Tea With Louise • Balance • The Rivers • Chapel • The Hour of Prayer • Une Fille / Une Femme • A One-Way Mirror • Nonconformity • Cada Noche, Lloro • Reflections on an Empty House Down the Street • Evening Melancholy • Abandoned Road • Big Boy • Baby Brothers • Metro Oscuro • Chuchoterhttps://digitalcommons.ursinus.edu/lantern/1126/thumbnail.jp

    The Lantern Vol. 52, No. 2, Spring 1986

    Get PDF
    • The Cartoonist • Balance • Haiku • Moment of Truth • There Was a Man • Mad Song / Cassandra\u27s Song • Part I - The Descent • Political Thought • Beast • Questions Yet Unanswered • Aphrodite: A Lover\u27s Lament • The Most Limber Boy • Style And • Thoughts From My Confusion • Andy • Momma Wake Up • In The Suburbs • Tommy • When the Phone Rings • There\u27s Something Soothing • Starting Over • A Day in the Life of a Flower • Pretension • It Seems Like So Long Ago • I Walk Along • Insignificant Man • Variations on a Latin Theme • The Riddle • Roll the Dice - Its Your Turn • This Is Your Day • One Night Stand • Make My Day • You Really Can\u27t Expect • Medusa • Don\u27t Think • Broken Chain • Life...A Hammock? • To My Friend • Ode On a Grecian Keghttps://digitalcommons.ursinus.edu/lantern/1128/thumbnail.jp

    Exploring Metabolic Pathway Reconstruction and Genome-Wide Expression Profiling in Lactobacillus reuteri to Define Functional Probiotic Features

    Get PDF
    The genomes of four Lactobacillus reuteri strains isolated from human breast milk and the gastrointestinal tract have been recently sequenced as part of the Human Microbiome Project. Preliminary genome comparisons suggested that these strains belong to two different clades, previously shown to differ with respect to antimicrobial production, biofilm formation, and immunomodulation. To explain possible mechanisms of survival in the host and probiosis, we completed a detailed genomic comparison of two breast milk–derived isolates representative of each group: an established probiotic strain (L. reuteri ATCC 55730) and a strain with promising probiotic features (L. reuteri ATCC PTA 6475). Transcriptomes of L. reuteri strains in different growth phases were monitored using strain-specific microarrays, and compared using a pan-metabolic model representing all known metabolic reactions present in these strains. Both strains contained candidate genes involved in the survival and persistence in the gut such as mucus-binding proteins and enzymes scavenging reactive oxygen species. A large operon predicted to encode the synthesis of an exopolysaccharide was identified in strain 55730. Both strains were predicted to produce health-promoting factors, including antimicrobial agents and vitamins (folate, vitamin B12). Additionally, a complete pathway for thiamine biosynthesis was predicted in strain 55730 for the first time in this species. Candidate genes responsible for immunomodulatory properties of each strain were identified by transcriptomic comparisons. The production of bioactive metabolites by human-derived probiotics may be predicted using metabolic modeling and transcriptomics. Such strategies may facilitate selection and optimization of probiotics for health promotion, disease prevention and amelioration

    Data from: β-adrenergic receptor-dependent alterations in murine cardiac transcript expression are differentially regulated by gefitinib in vivo

    No full text
    β-adrenergic receptor (βAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute βAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the βAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib), including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, βAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib

    Data from: β-adrenergic receptor-dependent alterations in murine cardiac transcript expression are differentially regulated by gefitinib in vivo

    No full text
    β-adrenergic receptor (βAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute βAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the βAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib), including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, βAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib

    Data from: Temporal and gefitinib-sensitive regulation of cardiac cytokine expression via chronic β-adrenergic receptor stimulation

    No full text
    Chronic stimulation of β-adrenergic receptors (βAR) can promote survival signaling via transactivation of epidermal growth factor receptor (EGFR), but ultimately alters cardiac structure and contractility over time, in part via enhanced cytokine signaling. We hypothesized that chronic catecholamine signaling will have a temporal impact on cardiac transcript expression in vivo, in particular cytokines, and that EGFR transactivation plays a role in this process. C57BL/6 mice underwent infusion with vehicle or isoproterenol (Iso) ± gefitinib (Gef) for 1 or 2 weeks. Cardiac contractility decreased following 2 weeks of Iso treatment, while cardiac hypertrophy, fibrosis and apoptosis were enhanced at both timepoints. Inclusion of Gef preserved contractility, blocked Iso-induced apoptosis and prevented hypertrophy at the 2 week timepoint, but caused fibrosis on its own. RNAseq analysis revealed hundreds of cardiac transcripts altered by Iso at each timepoint with subsequent RT-qPCR validation confirming distinct temporal patterns of transcript regulation, including those involved in cardiac remodeling and survival signaling, as well as numerous cytokines. While Gef infusion alone did not significantly alter cytokine expression, it abrogated the Iso-mediated changes in a majority of the βAR-sensitive cytokines, including CCL2 and TNF-α. Additionally, the impact of βAR-dependent EGFR transactivation on the acute regulation of cytokine transcript expression was assessed in isolated cardiomyocytes and in cardiac fibroblasts, where the majority of Iso-dependent, and EGFR-sensitive, changes in cytokines occurred. Overall, coincident with changes in cardiac structure and contractility, βAR stimulation dynamically alters cardiac transcript expression over time, including numerous cytokines that are regulated via EGFR-dependent signaling

    Talraico et al. 2014 Cardiac Transcript Data

    No full text
    This transcriptome dataset includes the differential analysis of cardiac transcripts modulated in vivo within one hour of treatment with either isoproterenol (beta adrenergic receptor agonist, 1 mg/kg), gefitinib (epidermal growth factor inhibitor, 5 mg/kg) or both. Analyses are gefitinib versus vehicle, isoproterenol versus vehicle, gefitinib+isoproterenol versus vehicle and gefitinib+isoproterenol versus isoproterenol
    corecore